Tuesday, December 18, 2012

How I constructed a loading hopper

The copper mine is an important feature of the railway as it was the supposed reason for the line's existence. I recently started construction of some low-relief mine buildings (See How I constructed some low relief buildings for the copper mine) and had planned to scratchbuild a loading hopper, but I happened to come across a wooden kit by the German company of Holzmodellbausatz  on a well known internet auction site.


The kit contained all the pieces needed, most of them pre-cut, and an exploded diagram with some instructions in German.

Although the exploded diagram was well detailed, my lack of ability to read German meant I had no indication as to the order in which the pieces should be assembled. I decided that as the hopper looked to be the most substantial part of the model, I would start with that. The four pieces of ply were glued with exterior PVA and tacked together with copper panel pins.

The four pieces forming the upper part of the hopper were then assembled and glued to the lower section.

Next, the internal sloping pieces for the hopper were glued into place.

The main structure of the hopper was completed and so this was left overnight for the glue to harden. The next most obvious components to be tackled seemed to be the legs. These comprised four pieces of 8mm square stripwood, 336mm in length. There were tacked and glued to the sides of the hopper.

To these were glued the platforms on either side of the hopper, with lengths of stripwood glued and tacked on to keep them aligned with each other.

The side platforms were grooved to allow a door to slide beneath the hopper to control the flow of rocks etc.. I decided not to construct this as operational as the fairly basic mechanism looked to be more functional than realistic.

The struts for the legs were then glued into place - two per leg.

Although I have a fair amount of confidence in PVA as a wood glue, I was not too sure about the bond between the struts and the legs and the rest of the structure. Short pegs from cocktail sticks were inserted into suitably drilled holes ........

....... before the supports for the legs and struts were glued into place on the foundation blocks.
 Pegs were also used to keep some of the other timbers aligned and in place. These were trimmed and sanded smooth once the glue had set.

The main framework members around the hopper were then glued into place. Initially I concentrated on the more substantial 8mm square members.

The 8mm x 8mm cross members for the legs were then pegged and glued into place.

 I then focused on the 3mm x 8mm framework sections, which needed to be trimmed to size. I decided not to follow the exploded diagram and so placed the timbers where I thought they looked most at home. I also took the opportunity to use them to disguise the join between the sides and the ends of the hopper.

 The main structure for the hopper was now complete.

At this point I decided to treat the wood, using a spirit-based wood preservative (Cuprinol). The stripwood was clearly pine and I had no idea as to whether the plywood was exterior grade and so I decided to take no chances. I flooded the exposed woodwork with two generous coats of preservative and then touched-up any areas which had not absorbed the preservative (ie those already covered with PVA glue) with a muddy mix of  acryclic paint.

Whilst this was drying off, I cut the pieces needed for railings. In the kit, these were supposed to be made from various pieces of stripwood, but to my mind they looked too heavyweight. I decided solder together some metal railings from pieces of brass rod and 00 code 100 nickel silver rail. Firstly, four 6cm long pieces of 00 rail were cut and drilled to take the bars of the railings.

These were then slotted into place in suitably drilled holes and 1.2mm diameter brass rods were threaded through the holes and soldered into place.

The railings were then removed and given a couple of coats of grey primer and a coat of matt black paint.

The railings were then fixed back in place with some epoxy resin to hold the uprights firmly in the holes. A ladder left over from my construction of semaphore signals (see How I constructed semaphore signals) was then cut to length. The legs of the safety hoop were inserted into suitably drilled holes in the side of the platform .........

.............. and a piece of stripwood was fixed to the base of one leg, to which the ladder was attached with a couple of loops fashioned from brass rod.

At this point I decided the main structure for the hopper was complete - though in the future I intend to construct a representation of some sort of operating mechanism for the doors.

I tried siting the hopper in its intended location at the copper mine but some additional foundation work will be needed to widen the raised timber trackbed on which it sits. In the meantime I temporarily positioned the hopper on the timber siding at Peckforton Station for a quick photoshoot.



I am considering weathering the hopper - blanching the timbers slightly and depositing layers of rock dust in the nooks and crannies. However, I am postponing this until I finish the mine buildings, which are presently under construction (see Progress Report 43). Ultimately, the hopper will be connected to the mine buildings via some sort of conveyor to supposedly take the copper ore from the base of the crusher up to the hopper (see How I constructed some mine buildings). The actual design of this will be dependent on the relative positions of the hopper and the building housing the crusher.

Saturday, November 24, 2012

Managing freight on the railway

One of the greatest pleasures I gain from running the railway is the handling of freight operations. To my mind, the sight of a mixed goods train winding its way through the greenery in the garden is far more evocative than watching a passenger train.

 In addition, I enjoy the logistical problems of shunting goods wagons to form realistically configured freight trains.


Operating sessions

Operating sessions centre on the running of a daily timetable which is based heavily on the 1923 timetable for the Southwold Railway.

Interspersed with this passenger timetable is a daily pick-up goods which sets out in the morning from Beeston Market, wends its way along the line dropping-off and picking up wagons, and then returns in the afternoon. The first passenger train of the day includes a flat wagon which picks up milk churns from halts and stations along the way .........

 ........ and the last train of the day is sometimes a mixed train, dependent on need.

 The goods traffic for the railway is generated by a relational database computer program which keeps track of the location of each wagon and generates trains in a semi-randomised way, based on percentage weighted traffic movements (ie the % likelihood that a particular wagon will travel from one station to another on the railway (see Computerised freight operation).

Traffic between the copper mines and the transshipment siding at Beeston Market is slotted-in between the above workings - usually running to three or four trains a day up and down the line.


Working out freight traffic needs

Over the years I have acquired and constructed a range of goods vehicles to handle the freight traffic on the line. The types and number of wagons on the railway have been determined by considering the needs of the local community. As the Peckforton Light Railway is hypothetically located in the rural countryside of Cheshire, the goods carried on the railway comprises coal, agricultural equipment, milk and cheese, soft fruit, livestock, building materials and general merchandise such as supplies for local stores and public houses (see Progress Report 12). In addition, there is a timber yard at Peckforton and, of course, the copper mines which form the main raison d'etre for the railway, both of which generate regular traffic. The mines not only require the transshipment of crushed copper ore and spoil from the workings to be transported as land-fill for sea-defences on the Dee Estuary, there is also a regular requirement for fuel oil, coal and explosives.

To cater for these needs, the railway has acquired 18 open wagons with coal and mixed loads.

The majority of these have been constructed from my own resin castings mounted on Hartland wagon chassis (see How I constructed my third batch of open wagons).

In addition, there are timber wagons,

a couple of tanker wagons (see Anglicising LGB tanker wagons),

 cattle wagons (see How I constructed cattle wagons from plasticard),

flat wagons (see How I created some flat wagons and Progress Report 39).

and closed vans (see How I converted an LGB Balcony van into a closed van).

There are also two rakes of weathered ore tipplers, one fully loaded and the other empty (see How I created loads for tipplers - and - Weathering tippler wagons).

Most of the open wagons and flat wagons have removable loads so the wagons can run fully laden in one direction and as empties in the reverse direction (see Progress Report 39). For more information see the railway's stock list.


Meeting those needs

At the start of a running session, my first job is to check the timetable to see where I had reached in the previous session. In an ideal world, each operating session would see the day's timetable run through in its entirety. In reality, I seldom manage a complete day's operation in a session and so have to leave off operations and then pick them up again at the start of the next session.

To assist in the above process, every siding on the railway has its own stock-box. At then end of an operating session the stock is rolled into its relevant box and the boxes are stored to be taken out again at the start of the next session (see How I made some stock boxes).

Locos and passenger stock are then restored to their previous locations and then, if the pick-up goods or mixed train is likely to be run in the session, the computerised freight program is fired-up to generate the day's freight traffic movements, and printed-out (see Computerised freight operation)..

Once the track has been cleaned, the next train of the day is run (see Track cleaning).

I get a great deal of satisfaction from conducting shunting operations - should that wagon be picked-up or dropped-off as the pick-up goods travels down the line or on its return-journey? How can I ensure the loaded cattle wagon is marshalled adjacent to the loco to avoid too much jostling of the livestock? How do I ensure the tanker wagon is marshalled as far as possible away from the loco? etc. (see Shunting Puzzles website)

From time to time I insert a special goods train. As its name suggests, at Beeston Market there is a Smithfield market adjacent to the station - much the same as Welshpool station on the Welshpool and Llanfair Light Railway.
The Countess at Welshpool Market - source: http://www.classictransportpictures.co.uk/photo_9955662.html
 What better reason to run a market day special in which all the livestock wagons, some of the flat wagons with agricultural machinery, a couple of vans containing produce and a workman's coach for the farm-hands accompanying the livestock?

Or, once in a while, a special coal train is run - assuming supplies need urgent replenishment following a national strike.

One of the greatest joys of garden railway modelling is that it can cater for all tastes. There are those who like to see trains running around the garden behind a live steam loco, those who enjoy seeing scale length express trains running at speed along a representation of a main line, those who want to display their collection of pristine rolling-stock and those who want to recreate a representation of a railway run more or less on prototypical practices. Whilst there are flaws in my approach, what is more important to my mind is the pleasure which I derive from playing trains.

Monday, November 19, 2012

Progress Report 43

This year I have had fewer opportunities than in previous years to run trains on the railway. Firstly, the weather has been very changeable which has meant that there have been relatively few days when an unbroken spell of decent weather could be guaranteed. On a couple of occasions, I had spent an hour or so setting up the railway, only to have to gather everything together and dash back indoors as a shower of heavy rain blew up. Secondly, I have spent several days during the summer period visiting full-scale narrow gauge railways for a new blog which I have set-up (see Narrow Gauge Railways UK). Mostly, these visits seem to have coincided with a spell of decent weather which I could have used for running the railway.
Orenstein & Koppel 0-4-0 locos Utrillas and Montalban at the West Lancashire Light Railway

 Thirdly, I have spent quite a bit of the summer, doing running repairs, constructing signals, making a set of buildings for the copper mine and experimenting with radio control (see below).


Running repairs

These have mostly centred on improving the running of stock which had wheels which were incompatible with LGB pointwork (see How I made IP Engineering wheels compatible with LGB pointwork). There would appear to be very little conformity over back-to-back measurements and flange depth of wheels across manufacturers when it comes to 45mm gauge. As a consequence, when products from different suppliers are brought together, there are often problems with smooth running through pointwork. Whilst I have sometimes re-wheeled stock to overcome these difficulties, there are occasions when this is not possible or desirable as, for example, when journals or axle stubs wheel sizes are non-standard. I have developed a rough-and-ready method of beefing-up finer scale wheels to improve their running characteristics through the coarser scale frogs of LGB pointwork.

Another issue associated with LGB pointwork which I have uncovered over the seven years I've been running my railway has been a steady and consistent breakdown in electrical continuity between the running rails, point-blades and lead-rails before and after the frogs. I could have removed every point and soldered invisible connections beneath the rails and sleepers, but when I have done this in the past it has caused more problems than it solved. Consequently, I opted for an in-situ solution of soldering jumper wires from the stock rails to the switch rails.
For more information see - How I repaired LGB pointwork


Constructing signals

As I try to run my railway according to light railway prototypical practices (which of course were often quite idiosyncratic), I decided that with up to three trains in steam at any one time, it was about time I supplied the line with signalling.

Using the signalling diagrams which were provided by a fellow modeller who also happens to be a Railtrack signalman (see Progress Report 36) ........


......... I figured that even the most minimal approach to signalling the railway would require 20 signals (around 4 per station). I explored various kit-built options but decided that the cost would be prohibitive. I had no option but to construct my own signals.

Although the signals were  of the same basic design as I wanted to batch-produce them, there were two alternatives in terms of the types of base. One type had a plate base for mounting on hard surfaces, while the other had a concrete base, for mounting in soft surfaces .......

All the signals are equipped with flickering LED lamps..........

 ....... which are shuttered at the rear.

At present, the signals are operated individually but eventually I hope to have them operated through linkages to a ground frame at each station, as per prototype.


For details of construction see Garden Rail edition 224 (April 2013).

 Mine buildings

Up until now, the sidings for the copper mine have had only a backdrop of the laurel hedge.

Ever since the extension to Beeston Market and the copper mine was constructed (see How I built the extension), I have been planning to add some buildings and loading hoppers.

At this stage, construction is well under way - with a variety of techniques being deployed.
The crusher shed and manager's office
The workshop

 The buildings are still very much work-in-progress with a lot more tidying-up and detailing needed. Once completed, the buildings will include a Gn15 feeder line from the mine workings together with loading hoppers and conveyors. See How I constructed the Mine Buildings)


Radio control

I have been broadening my experiments with battery operation and radio control, following the construction of my first battery powered radio controlled vehicle, a double-ended railbus (see How I constructed a railbus from two Andel coach kits).

A chance-find on eBay resulted in the purchase of a couple of cheap 2.4GHz radio transmitters designed to be used with low-cost helicopters.

I discovered that the transmitters worked with cheap FlySky receivers and so, after setting-up a test-rig, I explored the potential of this cost-effective approach to radio control.

As you can see from the video, with the modest outlay I'm figuring it's worth producing a small fleet of battery-operated locos to run alongside and maybe eventually replace the track powered locos. I have a couple of spare ToyTrain loco blocks which can be pressed into service and one day I will get around to converting my LGB 0-6-2 U-Class Zillertalbahn loco into a representation of the Southwold Railway loco No. 4 Wenhaston.